Download India's Leading JEE | NEET | Class 8-10 Exam preparation app
Enroll Now(a) A magnet at rest produces a magnetic field around it while an electric charge at rest produces an electric field around it.
(b) A current-carrying conductor has a magnetic field and not an electric field around it. On the other hand, a charge moving with a uniform velocity has an electric as well as a magnetic field around it.
(c) An electric field cannot be produced without a charge whereas a magnetic field can be produced without a magnet.
(d) No poles are produced in a coil carrying current but such a coil shows north and south polarities.
(e) All oscillating or an accelerated charge produces E.M. waves also in addition to electric and magnetic fields.


Unit of Magnetic field
UNIT OF $\overrightarrow{\mathrm{B}}:$ MKS weber/metre $^{2},$ SI tesla, CGS maxwell cm’ or gauss.One Tesla $=$ one (weber/m’) $=10^{4}$ (maxwell/cm’) $=10^{4}$ gauss
Biot-Savart’s Law
With the help of experimental results, Biot and Savart arrived at a mathematical expression that gives the magnetic field at some point in space in terms of the current that produces the field. That expression is based on the following experimental observations for the magnetic field $\overrightarrow{\mathrm{d} B}$ at a point $P$ associated with a length element $\overrightarrow{\mathrm{d} \ell}$ of a wire carrying a steady current I.


$\mu_{0}$ is called permeability of free space $\frac{\mu_{0}}{4 \pi}=10^{-7}$ henry/meter.
$1(\mathrm{H} / \mathrm{m})=1 \frac{\mathrm{T} \mathrm{m}}{\mathrm{A}}=1 \frac{\mathrm{Wb}}{\mathrm{Am}}=1 \frac{\mathrm{N}}{\mathrm{A}^{2}}=1 \frac{\mathrm{Ns}^{2}}{\mathrm{c}^{2}}$
DIMENSIONS of $\mu_{0}=\left[\mathrm{M}^{\prime} \mathrm{L}^{\prime} \mathrm{T}^{-2} \mathrm{A}^{-2}\right]$
For vaccum $: \sqrt{\frac{1}{\mu_{0} \varepsilon_{0}}}=\mathrm{c}=3 \times 10^{8} \mathrm{m} / \mathrm{s}$
Biot-Savart law in Vector form

[Note: Static charge is a source of electric field but not of magnetic field, whereas the moving charge is a source of electric field as well as magnetic field.]
the direction of $\mathrm{d} \mathrm{B}$ is perpendicular to the plane determined by $\overrightarrow{\mathrm{d} \ell}$ and $\overrightarrow{\mathrm{r}}$ (i.e. if $\overrightarrow{\mathrm{d} \ell}$ and $\overrightarrow{\mathrm{r}}$ lie in the plane of the paper then $\overrightarrow{\mathrm{dB}}$ is $\perp$ to plane of the paper). In the figure, direction of
$\overrightarrow{\mathrm{dB}}$ is into the page. (Use right hand screw rule).
Click here for the Video tutorials of Magnetic Effect of Current Class 12
Download India's Leading JEE | NEET | Class 8-10 Exam preparation app
Enroll Now
It is very easy to understand. It’s explanation is too good
That’s good
And also helpful for me
So
Thanks 😁
You are most welcome.
Thanks a lot dear.