A 600 pF capacitor is charged by a 200 V supply. It is then disconnected from the supply and is connected to another uncharged 600 pF capacitor. How much electrostatic energy is lost in the process?
Capacitance of the capacitor, C = 600 pF
Potential difference, V = 200 V
Electrostatic energy stored in the capacitor is given by,
$E=\frac{1}{2} C V^{2}$
$=\frac{1}{2} \times\left(600 \times 10^{-12}\right) \times(200)^{2}$
$=1.2 \times 10^{-5} \mathrm{~J}$
If supply is disconnected from the capacitor and another capacitor of capacitance $C=600 \mathrm{pF}$ is connected to it, then equivalent capacitance (C) of the combination is given by,$\frac{1}{C^{\prime}}=\frac{1}{C}+\frac{1}{C}$
$\frac{1}{C^{\prime}}=\frac{1}{C}+\frac{1}{C}$
$=\frac{1}{600}+\frac{1}{600}=\frac{2}{600}=\frac{1}{300}$
$\therefore C^{\prime}=300 \mathrm{pF}$
New electrostatic energy can be calculated as
$E^{\prime}=\frac{1}{2} \times C^{\prime} \times V^{2}$
$=\frac{1}{2} \times 300 \times(200)^{2}$
$=0.6 \times 10^{-5} \mathrm{~J}$
Loss in electrostatic energy $=E-E^{\prime}$
$=1.2 \times 10^{-5}-0.6 \times 10^{-5}$
$=0.6 \times 10^{-5}$
$=6 \times 10^{-6} \mathrm{~J}$
Therefore, the electrostatic energy lost in the process is $6 \times 10^{-6} \mathrm{~J}$.
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.