A and B are any two non-empty sets and A is proper subset of B.

Question:

A and B are any two non-empty sets and A is proper subset of B. If n(A) = 5, then the minimum possible value of n(A ∆ B) is___________.

Solution:

Given ∩ ϕ

$A \subseteq B$ and $n(A)=5$

Then minimum possible value of  n(A ∆ B)

Since $A \subsetneq B \quad$ i.e $n(A) \subsetneq n(B)$

⇒ ⋃ B

∩ =

n(A ∆ B) = n(⋃ B) – n(∩ B

n(B) – n(A)

n(B) – 5

i.e  n(A ∆ B) = – n(B) – 5 > n(A) – 5 = 0

i.e.  n(A ∆ B) > 0

Minimum possible value of  n(A ∆ B) = 1

Leave a comment

Close

Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now