A and B are square matrices of the same order,

Question:

$A$ and $B$ are square matrices of the same order, then______

(i) $(A B)^{\top}=$________

(ii) $(K A)^{\top}=$_______

(iii) $(k(A-\bar{B}))^{\top}=$_______

where $k$ is any scalar.

Solution:

It is given that, $A$ and $B$ are square matrices of the same order.

(i) $(A B)^{\top}=\quad B^{T} A^{T}$

(ii) $(k A)^{\top}=k(A)^{T}$, where $k$ is any scalar

(iii) $[K(A-B)]^{T}$

$=k(A-B)^{T} \quad\left[(k A)^{T}=k(A)^{T}\right]$

$=k\left(A^{T}-B^{T}\right) \quad\left[(A+B)^{T}=A^{T}+B^{\top}\right]$

$\therefore[k(A-B)]^{T}=k\left(A^{T}-B^{T}\right)$, where $k$ is any scalar

Leave a comment

Close

Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now