A and B are two events such that
P(A) = 0.54, P(B) = 0.69 and P(A ∩ B) = 0.35.
Find
(i) P(A ∩ B)
(ii) P(A′ ∩ B′)
(iii) P(A ∩ B′)
(iv) P(B ∩ A′)
It is given that $P(A)=0.54, P(B)=0.69, P(A \cap B)=0.35$
(i) We know that $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
$\therefore \mathrm{P}(\mathrm{A} \cup \mathrm{B})=0.54+0.69-0.35=0.88$
(ii) $A^{\prime} \cap B^{\prime}=(A \cup B)^{\prime}[$ by De Morgan's law]
$\therefore P\left(A^{\prime} \cap B^{\prime}\right)=P(A \cup B)^{\prime}=1-P(A \cup B)=1-0.88=0.12$
(iii) $P\left(A \cap B^{\prime}\right)=P(A)-P(A \cap B)$
$=0.54-0.35$
$=0.19$
(iv) We know that $n\left(\mathrm{~B} \cap \mathrm{A}^{\prime}\right)=n(\mathrm{~B})-n(\mathrm{~A} \cap \mathrm{B})$
$\Rightarrow \frac{n\left(\mathrm{~B} \cap \mathrm{A}^{\prime}\right)}{n(\mathrm{~S})}=\frac{n(\mathrm{~B})}{n(\mathrm{~S})}-\frac{n(\mathrm{~A} \cap \mathrm{B})}{n(\mathrm{~S})}$
$\therefore P\left(B \cap A^{\prime}\right)=P(B)-P(A \cap B)$
$\therefore \mathrm{P}\left(\mathrm{B} \cap \mathrm{A}^{\prime}\right)=0.69-0.35=0.34$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.