A complex number z is said to be unimodular


A complex number $z$ is said to be unimodular if $|z|=1$. Suppose $z_{1}$ and $z_{2}$ are complex numbers such that $\frac{z_{1}-2 z_{2}}{2-z_{1} \bar{z}_{2}}$ is unimodular and $z_{2}$ is not unimodular. Then the point $z_{1}$ lies on a :

  1.  circle of radius 2

  2. circle of radius $\sqrt{2}$

  3.  straight line parallel to x-axis

  4.  straight line parallel to y-axis

Correct Option: 1


Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now