A conical tent is 10 m high and the radius of its base is 24 m. Find

Question. A conical tent is 10 m high and the radius of its base is 24 m. Find

(i) slant height of the tent

(ii) cost of the canvas required to make the tent, if the cost of $1 \mathrm{~m}^{2}$ canvas is Rs 70 .

$\left[\right.$ Assume $\left.\pi=\frac{22}{7}\right]$


Solution:

A conical tent is 10 m high and the radius of its base is 24 m. Find (i) slant height of the tent

(i) Let ABC be a conical tent.

Height (h) of conical tent = 10 m

Radius (r) of conical tent = 24 m

Let the slant height of the tent be l.

In $\triangle \mathrm{ABO}$

$\mathrm{AB}^{2}=\mathrm{AO}^{2}+\mathrm{BO}^{2}$

$p^{2}=h^{2}+r^{2}$

$=(10 \mathrm{~m})^{2}+(24 \mathrm{~m})^{2}$

$=676 \mathrm{~m}^{2}$

$\therefore I=26 \mathrm{~m}$

Therefore, the slant height of the tent is 26 m.

(ii) CSA of tent $=\pi r l$

$=\left(\frac{22}{7} \times 24 \times 26\right) \mathrm{m}^{2}$

$=\frac{13728}{7} \mathrm{~m}^{2}$

Cost of $1 \mathrm{~m}^{2}$ canvas $=$ Rs 70

Cost of $\frac{13728}{7} \mathrm{~m}^{2}$ canvas $=\operatorname{Rs}\left(\frac{13728}{7} \times 70\right)$

$=\mathrm{Rs} 137280$

Therefore, the cost of the canvas required to make such a tent is

Rs 137280 .

Leave a comment

Close

Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now