A cylindrical tank of radius 10 m is being filled

Question:

A cylindrical tank of radius 10 m is being filled with wheat at the rate of 314 cubic metre per hour. Then the depth of the wheat is increasing at the rate of

(a) $1 \mathrm{~m} / \mathrm{hr}$

(b) $0.1 \mathrm{~m} / \mathrm{hr}$

(c) $1.1 \mathrm{~m} / \mathrm{hr}$

(d) $0.5 \mathrm{~m} / \mathrm{hr}$

Solution:

(a) 1 m/hr

Let $r, h$ and $V$ be the radius, height and volume of the cylinder at any time $t .$ Then,

$V=\pi r^{2} h$

$\Rightarrow \frac{d V}{d t}=\pi r^{2} \frac{d h}{d t}$

$\Rightarrow 314=3.14 \times(10)^{2} \frac{d h}{d t}$

$\Rightarrow \frac{d h}{d t}=\frac{314}{314}$

$\Rightarrow \frac{d h}{d t}=1 \mathrm{~m} / \mathrm{hr}$

Leave a comment

Close

Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now