A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places,
A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.
Let the G.P. be $T_{1}, T_{2}, T_{3}, T_{4}, \ldots T_{2 n}$.
Number of terms $=2 n$
According to the given condition,
$\mathrm{T}_{1}+\mathrm{T}_{2}+\mathrm{T}_{3}+\ldots+\mathrm{T}_{2 n}=5\left[\mathrm{~T}_{1}+\mathrm{T}_{3}+\ldots+\mathrm{T}_{2 n-1}\right]$
$\Rightarrow \mathrm{T}_{1}+\mathrm{T}_{2}+\mathrm{T}_{3}+\ldots+\mathrm{T}_{2 n}-5\left[\mathrm{~T}_{1}+\mathrm{T}_{3}+\ldots+\mathrm{T}_{2 n-1}\right]=0$
$\Rightarrow \mathrm{T}_{2}+\mathrm{T}_{4}+\ldots+\mathrm{T}_{2 n}=4\left[\mathrm{~T}_{1}+\mathrm{T}_{3}+\ldots+\mathrm{T}_{2 n-1}\right]$
Let the G.P. be $a, a r, a r^{2}, a r^{3}, \ldots$
$\therefore \frac{\operatorname{ar}\left(r^{n}-1\right)}{r-1}=\frac{4 \times a\left(r^{n}-1\right)}{r-1}$
$\Rightarrow a r=4 a$
$\Rightarrow r=4$
Thus, the common ratio of the G.P. is 4.
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.