A hollow sphere of external and internal diameters 8 cm and 4 cm, respectively is melted into a solid cone of base diameter 8 cm.
A hollow sphere of external and internal diameters 8 cm and 4 cm, respectively is melted into a solid cone of base diameter 8 cm. Find the height of the cone.
We have,
External radius of the hollow sphere, $R_{1}=\frac{8}{2}=4 \mathrm{~cm}$,
Internal radius of the hollow sphere, $R_{2}=\frac{4}{2}=2 \mathrm{~cm}$ and
Base radius of the cone, $r=\frac{8}{2}=4 \mathrm{~cm}$
Let the height of the cone be $h$.
Now,
Volume of the cone $=$ Volume of the hollow sphere
$\Rightarrow \frac{1}{3} \pi r^{2} h=\frac{4}{3} \pi R_{1}^{3}-\frac{4}{3} \pi R_{2}{ }^{3}$
$\Rightarrow \frac{1}{3} \pi r^{2} h=\frac{4}{3} \pi\left(R_{1}{ }^{3}-R_{2}{ }^{3}\right)$
$\Rightarrow h=\frac{4}{r^{2}}\left(R_{1}{ }^{3}-R_{2}{ }^{3}\right)$
$\Rightarrow h=\frac{4}{4 \times 4}\left(4^{3}-2^{3}\right)$
$\Rightarrow h=\frac{1}{4}(64-8)$
$\Rightarrow h=\frac{1}{4} \times 56$
$\therefore h=14 \mathrm{~cm}$
So, the height of the cone is 14 cm.
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.