A hollow sphere of internal and external radii 2 cm and 4 cm respectively is melted into a cone of base radius 4 cm.
Question:
A hollow sphere of internal and external radii 2 cm and 4 cm respectively is melted into a cone of base radius 4 cm. Find the height and slant height of the cone.
Solution:
Given that
Hollow sphere external radii = r2 = 4 cm
Internal radii = r1 = 2 cm
Cone base radius (R) = 4 cm
Height = h
Volume of cone = Volume of sphere
$\frac{1}{3} \pi r^{2} h=\frac{4}{3} \pi\left(r_{2}^{2}-r_{1}^{2}\right)$
$4^{2} h=4\left(4^{3}-2^{3}\right)$
$\mathrm{h}=\frac{4 \times 56}{16}$
h = 14 cm
Slantheight $(\mathrm{l})=\sqrt{\mathrm{r}^{2}+\mathrm{h}^{2}}$
Slantheight $(\mathrm{l})=\sqrt{\mathrm{r}_{2}^{2}+\mathrm{h}^{2}}$
$1=\sqrt{4^{2}+\left(14^{2}\right)}$
$1=\sqrt{16+196}$
$1=\sqrt{212}$
$1=14.56 \mathrm{~cm}$