Question.
A rhombus shaped field has green grass for 18 cows to graze. If each side of the rhombus is 30 m and its longer diagonal is 48 m, how much area of grass field will each cow be getting?
Solution:
Let ABCD be a rhombus-shaped field.
For $\triangle B C D$,
Semi-perimeter, $s=\frac{(48+30+30) \mathrm{cm}}{2}=54 \mathrm{~m}$
By Heron’s formula,
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
Therefore, area of $\triangle B C D=[\sqrt{54(54-48)(54-30)(54-30)}] \mathrm{m}^{2}$
$=\sqrt{54(6)(24)(24)}=3 \times 6 \times 24=432 \mathrm{~m}^{2}$
Area of field $=2 \times$ Area of $\triangle B C D$
$=(2 \times 432) \mathrm{m}^{2}=864 \mathrm{~m}^{2}$
Area for grazing for 1 cow $=\frac{864}{18}=48 \mathrm{~m}^{2}$
Each cow will get $48 \mathrm{~m}^{2}$ area of grass field.
Let ABCD be a rhombus-shaped field.
For $\triangle B C D$,
Semi-perimeter, $s=\frac{(48+30+30) \mathrm{cm}}{2}=54 \mathrm{~m}$
By Heron’s formula,
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
Therefore, area of $\triangle B C D=[\sqrt{54(54-48)(54-30)(54-30)}] \mathrm{m}^{2}$
$=\sqrt{54(6)(24)(24)}=3 \times 6 \times 24=432 \mathrm{~m}^{2}$
Area of field $=2 \times$ Area of $\triangle B C D$
$=(2 \times 432) \mathrm{m}^{2}=864 \mathrm{~m}^{2}$
Area for grazing for 1 cow $=\frac{864}{18}=48 \mathrm{~m}^{2}$
Each cow will get $48 \mathrm{~m}^{2}$ area of grass field.
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.