A solid cone of base radius 10 cm is cut into two parts through the midpoint of its height, by a plane parallel to its base.
A solid cone of base radius 10 cm is cut into two parts through the midpoint of its height, by a plane parallel to its base. Find the ratio of the volumes of the two parts of the cone.
We have,
Radius of solid cone, $R=\mathrm{CP}=10 \mathrm{~cm}$,
Let the height of the solid cone be, $\mathrm{AP}=H$,
the radius of the smaller cone, $\mathrm{QD}=r$ and
the height of the smaller cone be, $\mathrm{AQ}=h$.
Also, $\mathrm{AQ}=\frac{\mathrm{AP}}{2}$ i. e. $h=\frac{H}{2}$ or $H=2 h$ .........(i)
Now, in $\Delta \mathrm{AQD}$ and $\triangle \mathrm{APC}$,
$\angle \mathrm{QAD}=\angle \mathrm{PAC} \quad($ Common angle $)$
$\angle \mathrm{AQD}=\angle \mathrm{APC}=90^{\circ}$
So, by AA criteria
$\triangle \mathrm{AQD} \sim \mathrm{APC}$
$\Rightarrow \frac{\mathrm{AQ}}{\mathrm{AP}}=\frac{\mathrm{QD}}{\mathrm{PC}}$
$\Rightarrow \frac{h}{H}=\frac{r}{R}$
$\Rightarrow \frac{h}{2 h}=\frac{r}{R} \quad[\mathrm{Using}(\mathrm{i})]$
$\Rightarrow \frac{1}{2}=\frac{r}{R}$
$\Rightarrow R=2 r \quad \ldots$ (ii)
As,
Volume of smaller cone $=\frac{1}{3} \pi r^{2} h$
And,
Volume of solid cone $=\frac{1}{3} \pi R^{2} H$
$=\frac{1}{3} \pi(2 r)^{2} \times(2 h) \quad[$ Using (i) and (ii) $]$
$=\frac{8}{3} \pi r^{2} h$
So,
Volume of frustum $=$ Volume of solid cone $-$ Volume of smaller cone
$=\frac{8}{3} \pi r^{2} h-\frac{1}{3} \pi r^{2} h$
$=\frac{7}{3} \pi r^{2} h$
Now, the ratio of the volumes of the two parts $=\frac{\text { Volume of the smaller cone }}{\text { Volume of the frustum }}$
$=\frac{\left(\frac{1}{3} \pi r^{2} h\right)}{\left(\frac{7}{3} \pi r^{2} h\right)}$
$=\frac{1}{7}$
$=1: 7$
So, the ratio of the volume of the two parts of the cone is 1 : 7.
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.