A student scores the following marks in five tests :

Question:

A student scores the following marks in five tests : $45,54,41,57,43$. His score is not known for the sixth test. If the mean score is 48 in the six tests, then the standard deviation of the marks in six tests is

  1. $\frac{10}{\sqrt{3}}$

  2. $\frac{100}{\sqrt{3}}$

  3. $\frac{100}{3}$

  4. $\frac{10}{3}$


Correct Option: 1

Solution:

Let $x$ be the $6^{\text {th }}$ observation

$\Rightarrow 45+54+41+57+43+x=48 \times 6=288$

$\Rightarrow x=48$

variance $=\left(\frac{\sum \mathrm{x}_{\mathrm{i}}^{2}}{6}-(\overline{\mathrm{x}})^{2}\right)$

$\Rightarrow$ variance $=\frac{14024}{6}-(48)^{2}$

$=\frac{100}{3}$

$\Rightarrow$ standard deviation $=\frac{10}{\sqrt{3}}$

Leave a comment