Question:
A sum amounts to Rs 756.25 at 10% per annum in 2 years, compounded annually. Find the sum.
Solution:
Let the sum be Rs $\mathrm{x}$.
Then,
$\mathrm{A}=\mathrm{P}\left(1+\frac{\mathrm{R}}{100}\right)^{\mathrm{n}}$
$=\mathrm{P}\left[\left(1+\frac{\mathrm{R}}{100}\right)^{\mathrm{n}}\right]$
$756.25=\mathrm{x}\left[\left(1+\frac{10}{100}\right)^{2}\right]$
$756.25=\mathrm{x}\left[(1.10)^{2}\right]$
$\mathrm{x}=\frac{756.25}{1.21}$
$=625$
Thus, the required sum is Rs 625 .
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.