ABCD is a parallelogram in which ∠A = 70°.

Question:

ABCD is a parallelogram in which ∠A = 70°. Compute ∠BC and D.

Solution:

Opposite angles of a parallelogram are equal.

$\therefore \angle \mathrm{C}=70^{\circ}=\angle \mathrm{A} .$

$\angle \mathrm{B}=\angle \mathrm{D}$

Also, the sum of the adjacent angles of a parallelogram is $180^{\circ}$.

$\therefore \angle \mathrm{A}+\angle \mathrm{B}=180^{\circ}$

$70^{\circ}+\angle \mathrm{B}=180^{\circ}$

$\angle \mathrm{B}=110^{\circ}$

$\therefore \angle \mathrm{B}=110^{\circ}, \angle \mathrm{C}=70^{\circ}$ and $\angle \mathrm{D}=110^{\circ}$

Leave a comment

Close

Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now