ABCD is a rectangle in which diagonal AC bisects ∠A as well as ∠C. Show that:<br/><br/>(i) ABCD is a square <br/><br/>(ii) diagonal BD bisects ∠B as well as ∠D.
Solution:
(i) It is given that $\mathrm{ABCD}$ is a rectangle.
$\therefore \angle \mathrm{A}=\angle \mathrm{C}$
$\Rightarrow \frac{1}{2} \angle \mathrm{A}=\frac{1}{2} \angle \mathrm{C}$
$\Rightarrow \angle \mathrm{DAC}=\angle \mathrm{DCA} \quad($ AC bisects $\angle \mathrm{A}$ and $\angle \mathrm{C})$
$C D=D A$ (Sides opposite to equal angles are also equal)
However, $D A=B C$ and $A B=C D$ (Opposite sides of a rectangle are equal)
$\therefore \mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$
$A B C D$ is a rectangle and all of its sides are equal.
Hence, $A B C D$ is a square.
(ii) Let us join BD.
In $\triangle \mathrm{BCD}$
$B C=C D$ (Sides of a square are equal to each other)
$\angle C D B=\angle C B D$ (Angles opposite to equal sides are equal)
However, $\angle C D B=\angle A B D$ (Alternate interior angles for $A B \| C D$ )
$\therefore \angle C B D=\angle A B D$
$\Rightarrow \mathrm{BD}$ bisects $\angle \mathrm{B}$.
Also, $\angle C B D=\angle A D B$ (Alternate interior angles for $B C \| A D$ )
$\Rightarrow \angle C D B=\angle A B D$
$\therefore \mathrm{BD}$ bisects $\angle \mathrm{D}$.
(i) It is given that $\mathrm{ABCD}$ is a rectangle.
$\therefore \angle \mathrm{A}=\angle \mathrm{C}$
$\Rightarrow \frac{1}{2} \angle \mathrm{A}=\frac{1}{2} \angle \mathrm{C}$
$\Rightarrow \angle \mathrm{DAC}=\angle \mathrm{DCA} \quad($ AC bisects $\angle \mathrm{A}$ and $\angle \mathrm{C})$
$C D=D A$ (Sides opposite to equal angles are also equal)
However, $D A=B C$ and $A B=C D$ (Opposite sides of a rectangle are equal)
$\therefore \mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$
$A B C D$ is a rectangle and all of its sides are equal.
Hence, $A B C D$ is a square.
(ii) Let us join BD.
In $\triangle \mathrm{BCD}$
$B C=C D$ (Sides of a square are equal to each other)
$\angle C D B=\angle C B D$ (Angles opposite to equal sides are equal)
However, $\angle C D B=\angle A B D$ (Alternate interior angles for $A B \| C D$ )
$\therefore \angle C B D=\angle A B D$
$\Rightarrow \mathrm{BD}$ bisects $\angle \mathrm{B}$.
Also, $\angle C B D=\angle A D B$ (Alternate interior angles for $B C \| A D$ )
$\Rightarrow \angle C D B=\angle A B D$
$\therefore \mathrm{BD}$ bisects $\angle \mathrm{D}$.
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.