An angle of intersection of the curves, $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
and $x^{2}+y^{2}=a b, a>b$, is :
Correct Option: , 3
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, x^{2}+y^{2}=a b$
$\frac{2 x_{1}}{a^{2}}+\frac{2 y_{1} y^{\prime}}{b^{2}}=0$
$\Rightarrow \mathrm{y}_{1}{ }^{\prime}=\frac{-\mathrm{x}_{1}}{\mathrm{a}^{2}} \frac{\mathrm{b}^{2}}{\mathrm{y}_{1}}$ ..........(1)
$\therefore 2 \mathrm{x}_{1}+2 \mathrm{y}_{1} \mathrm{y}^{\prime}=0$
$\Rightarrow \mathrm{y}_{2}^{\prime}=\frac{-\mathrm{x}_{1}}{\mathrm{y}_{1}}$ ............(2)
Here $\left(x_{1} y_{1}\right)$ is point of intersection of both curves
$\therefore x_{1}^{2}=\frac{a^{2} b}{a+b}, y_{1}^{2}=\frac{a b^{2}}{a+b}$
$\therefore \tan \theta=\left|\frac{\mathrm{y}_{1}{ }^{\prime}-\mathrm{y}_{2}{ }^{\prime}}{1+\mathrm{y}_{1}{ }^{\prime} \mathrm{y}_{2}{ }^{\prime}}\right|=\left|\frac{\frac{-\mathrm{x}_{1} \mathrm{~b}^{2}}{\mathrm{a}^{2} \mathrm{y}_{1}}+\frac{\mathrm{x}_{1}}{\mathrm{y}_{1}}}{1+\frac{\mathrm{x}_{1}{ }^{2} \mathrm{~b}^{2}}{\mathrm{a}^{2} \mathrm{y}_{1}^{2}}}\right|$
$\tan \theta=\left|\frac{-b^{2} x_{1} y_{1}+a^{2} x_{1} y_{1}}{a^{2} y_{1}^{2}+b^{2} x_{1}^{2}}\right|$
$\tan \theta=\left|\frac{\mathrm{a}-\mathrm{b}}{\sqrt{\mathrm{ab}}}\right|$