Choose the correct alternative in the following:
For the curve $\cdot \sqrt{x}+\sqrt{y}=1, \frac{d y}{d x} \cdot$ at $(1 / 4,1 / 4)$ is
A. $1 / 2$
B. 1
C. $-1$
D. 2
$\sqrt{x}+\sqrt{y}=1$
Differentiating w.r.t $\mathrm{x}$ we get,
$\Rightarrow \frac{\mathrm{d}}{\mathrm{dx}}(\sqrt{\mathrm{x}})+\frac{\mathrm{d}}{\mathrm{dx}}(\sqrt{\mathrm{y}})=\frac{\mathrm{d}}{\mathrm{dx}}(1)$
$\Rightarrow \frac{1}{2 \sqrt{\mathrm{x}}}+\frac{1}{2 \sqrt{\mathrm{y}}} \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=0 \because \frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \cdot \mathrm{x}^{\mathrm{n}-1}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=-\sqrt{\frac{\mathrm{y}}{\mathrm{x}}}$
$\Rightarrow\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)_{(\mathrm{x}, \mathrm{y})=\left(\frac{1}{4} \frac{1}{4}\right)}=-\sqrt{\frac{\frac{1}{4}}{\frac{1}{4}}}=-1$
$\Rightarrow\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)_{(\mathrm{x}, \mathrm{y})=\left(\frac{1}{4} \frac{1}{4}\right)}=-1=(\mathrm{C})$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.