Choose the correct answer of the following question:
The tops of two towers of heights x and y, standing on a level ground subtend angles of 30° and 60°, respectively at the centre of the line joining their feet. Then, x : y is
(a) 1 : 2 (b) 2 : 1 (c) 1 : 3 (d) 3 : 1
Let AB and CD be the two towers such that AB = x and CD = y.
We have,
$\angle \mathrm{AEB}=30^{\circ}, \angle \mathrm{CED}=60^{\circ}$ and $\mathrm{BE}=\mathrm{DE}$
In $\Delta \mathrm{ABE}$,
$\tan 30^{\circ}=\frac{\mathrm{AB}}{\mathrm{BE}}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{x}{\mathrm{BE}}$
$\Rightarrow \mathrm{BE}=x \sqrt{3}$
Also, in $\Delta \mathrm{CDE}$,
$\tan 60^{\circ}=\frac{\mathrm{CD}}{\mathrm{DE}}$
$\Rightarrow \sqrt{3}=\frac{y}{\mathrm{DE}}$
$\Rightarrow \mathrm{DE}=\frac{y}{\sqrt{3}}$
As, BE $=\mathrm{DE}$
$\Rightarrow x \sqrt{3}=\frac{y}{\sqrt{3}}$
$\Rightarrow \frac{x}{y}=\frac{1}{\sqrt{3} \times \sqrt{3}}$
$\Rightarrow \frac{x}{y}=\frac{1}{3}$
$\therefore x: y=1: 3$
Hence, the correct answer is option (c).
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.