Question:
Construct a 3 × 2 matrix whose elements are given by aij = ei.xsin jx
Solution:
Let A be a 3 x 2 matrix
Such that, aij = ei.xsin jx; where where 1 ≤ i ≤ 3; 1 ≤ j ≤ 2
So, the terms are given as
$a_{11}=e^{x} \sin x \quad a_{12}=e^{x} \sin 2 x$
$a_{21}=e^{2 x} \sin x \quad a_{22}=e^{2 x} \sin 2 x$
$a_{31}=e^{3 x} \sin x \quad a_{32}=e^{3 x} \sin 2 x$
Therefore, $A=\left[\begin{array}{ll}e^{x} \sin x & e^{x} \sin 2 x \\ e^{2 x} \sin x & e^{2 x} \sin 2 x \\ e^{3 x} \sin x & e^{3 x} \sin 2 x\end{array}\right]$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.