Determine the values of a and b so that the following system of linear equations have infinitely many solutions :
Determine the values of a and b so that the following system of linear equations have infinitely many solutions :
$(2 a-1) x+3 y-5=0$
$3 x+(b-1) y-2=0$
GIVEN:
$(2 a-1) x+3 y-5=0$
$3 x+(b-1) y-2=0$
To find: To determine for what value of k the system of equation has infinitely many solutions
We know that the system of equations
$a_{1} x+b_{1} y=c_{1}$
$a_{2} x+b_{2} y=c_{2}$
For infinitely many solution
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
Here
$\frac{(2 a-1)}{3}=\frac{3}{(b-1)}=\frac{5}{2}$
$\frac{3}{(b-1)}=\frac{5}{2}$
$6=5(b-1)$
$6=5 b-5$
$b=\frac{11}{5}$
Again consider
$\frac{(2 a-1)}{3}=\frac{3}{(b-1)}$
$(2 a-1)(b-1)=9$
$(2 a-1)\left(\frac{11}{5}-1\right)=9$ [subsituting the value of $b$ ]
$(2 a-1)\left(\frac{11-5}{5}\right)=9$
$(2 a-1)\left(\frac{6}{5}\right)=9$
$(2 a-1)=9\left(\frac{5}{6}\right)$
$(2 a-1)=\left(\frac{15}{2}\right)$
$2 a=\frac{15}{2}+1$
$2 a=\frac{15+2}{2}$
$2 a=\frac{17}{2}$
$a=\frac{17}{4}$
Hence for $a=\frac{17}{4}$ and $b=\frac{11}{5}$ the system of equation has infinitely many solution.
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.