Differentiate the following functions with respect to $x$ :
$\tan ^{-1}\left(e^{x}\right)$
Let $y=\tan ^{-1}\left(e^{x}\right)$
On differentiating $y$ with respect to $x$, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\tan ^{-1} e^{x}\right)$
We know $\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{1+\left(\mathrm{e}^{\mathrm{x}}\right)^{2}} \frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{e}^{\mathrm{x}}\right)$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=\frac{1}{1+e^{2 x}} \frac{d}{d x}\left(e^{x}\right)$
However, $\frac{d}{d x}\left(e^{x}\right)=e^{x}$
$\Rightarrow \frac{d y}{d x}=\frac{1}{1+e^{2 x}} \times e^{x}$
$\therefore \frac{d y}{d x}=\frac{e^{x}}{1+e^{2 x}}$
Thus, $\frac{d}{d x}\left(\tan ^{-1} e^{x}\right)=\frac{e^{x}}{1+e^{2 x}}$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.