Differentiate the following functions with respect to $x$ :
$\sin ^{-1}\left\{\sqrt{\frac{1-x}{2}}\right\}, 0
$y=\sin ^{-1}\left\{\sqrt{\frac{1-x}{2}}\right\}$
let $x=\cos 2 \theta$
Now
$y=\sin ^{-1}\left\{\sqrt{\frac{1-\cos 2 \theta}{2}}\right\}$
$y=\sin ^{-1}\left\{\sqrt{\frac{2 \sin ^{2} \theta}{2}}\right\}$
Using $\cos 2 \theta=1-2 \sin ^{2} \theta$
$y=\sin ^{-1}(\sin \theta)$
Considering the limits,
$0 $0<\cos 2 \theta<1$ $0<2 \theta<\frac{\pi}{2}$ $0<\theta<\frac{\pi}{4}$ Now, $y=\sin ^{-1}(\sin \theta)$ $y=\theta$ $y=\frac{1}{2} \cos ^{-1} x$ Differentiating w.r.t $\mathrm{x}$, we get $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2}\left(-\frac{1}{\sqrt{1-\mathrm{x}^{2}}}\right)$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.