Question:
Differentiate the following w.r.t. x:
$\frac{e^{x}}{\sin x}$
Solution:
Let $y=\frac{e^{x}}{\sin x}$
By using the quotient rule, we obtain
$\frac{d y}{d x}=\frac{\sin x \frac{d}{d x}\left(e^{x}\right)-e^{x} \frac{d}{d x}(\sin x)}{\sin ^{2} x}$
$=\frac{\sin x \cdot\left(e^{x}\right)-e^{x} \cdot(\cos x)}{\sin ^{2} x}$
$=\frac{e^{x}(\sin x-\cos x)}{\sin ^{2} x}, x \neq n \pi, n \in \mathbf{Z}$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.