Differentiate the function with respect to x.
$\cos x \cdot \cos 2 x \cdot \cos 3 x$
Let $y=\cos x \cdot \cos 2 x \cdot \cos 3 x$
Taking logarithm on both the sides, we obtain
$\log y=\log (\cos x \cdot \cos 2 x \cdot \cos 3 x)$
$\Rightarrow \log y=\log (\cos x)+\log (\cos 2 x)+\log (\cos 3 x)$
Differentiating both sides with respect to x, we obtain
$\frac{1}{y} \frac{d y}{d x}=\frac{1}{\cos x} \cdot \frac{d}{d x}(\cos x)+\frac{1}{\cos 2 x} \cdot \frac{d}{d x}(\cos 2 x)+\frac{1}{\cos 3 x} \cdot \frac{d}{d x}(\cos 3 x)$
$\Rightarrow \frac{d y}{d x}=y\left[-\frac{\sin x}{\cos x}-\frac{\sin 2 x}{\cos 2 x} \cdot \frac{d}{d x}(2 x)-\frac{\sin 3 x}{\cos 3 x} \cdot \frac{d}{d x}(3 x)\right]$
$\therefore \frac{d y}{d x}=-\cos x \cdot \cos 2 x \cdot \cos 3 x[\tan x+2 \tan 2 x+3 \tan 3 x]$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.