Each of the persons A and B


Each of the persons $\mathrm{A}$ and $\mathrm{B}$ independently tosses three fair coins. The probability that both of them get the same number of heads is :

  1. $\frac{1}{8}$

  2. $\frac{5}{8}$

  3. $\frac{5}{16}$

  4. 1

Correct Option: 3,


C-I '0' Head

T T T $\quad\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{3}=\frac{1}{64}$

C-II '1' head

H T T $\quad\left(\frac{3}{8}\right)\left(\frac{3}{8}\right)=\frac{9}{64}$

C-III '2' Head

H H T $\quad\left(\frac{3}{8}\right)\left(\frac{3}{8}\right)=\frac{9}{64}$

C-IV'3' Heads

$\mathrm{HHH} \quad\left(\frac{1}{8}\right)\left(\frac{1}{8}\right)=\frac{1}{64}$

Total probability $=\frac{5}{16} .$

Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now