Question:
Evaluate the following integrals:
Solution:
Let $I=\int e^{2 x} \cos (3 x+4) d x$
Integrating by parts
$I=e^{2 x} \frac{\sin (3 x+4)}{3}-\int 2 e^{2 x} \frac{\sin (3 x+4)}{3} d x$
$=\frac{1}{3} e^{2 x} \sin (3 x+4)-\frac{2}{3} \int e^{2 x} \sin (3 x+4) d x$
$=\frac{1}{3} e^{2 x} \sin (3 x+4)-\frac{2}{3}\left\{-e^{2 x} \frac{\cos (3 x+4)}{3}+\int 2 e^{2 x} \frac{\cos (3 x+4)}{3} d x\right\}$
$I=\frac{e^{2 x}}{9}[2 \cos (3 x+4)+3 \sin (3 x+4)]+c$
Hence,
$I=\frac{e^{2 x}}{9}[2 \cos (3 x+4)+3 \sin (3 x+4)]+c$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.