Evaluate the following integrals:

Question:

Evaluate the following integrals:

$\int e^{x} \cdot \frac{\sqrt{1-x^{2}} \sin ^{-1} x+1}{\sqrt{1-x^{2}}} d x$

Solution:

Let $I=\int e^{x} \frac{\sqrt{1-x^{2}} \sin ^{-1} x+1}{\sqrt{1-x^{2}}} d x$

$I=\int e^{x} \sin ^{-1} x+\int e^{x} \frac{1}{\sqrt{1-x^{2}}} d x$

Integrating by parts

$=e^{x} \sin ^{-1} x-\int e^{x}\left(\frac{d}{d x}\left(\sin ^{-1} x\right)\right) d x+\int e^{x} \frac{1}{\sqrt{1-x^{2}}} d x$

$=e^{x} \sin ^{-1} x-\int e^{x} \frac{1}{\sqrt{1-x^{2}}} d x+\int e^{x} \frac{1}{\sqrt{1-x^{2}}} d x$

$=e^{x} \sin ^{-1} x+c$

Leave a comment