Question:
Evaluate the following integrals:
$\int \cot x \log \sin x d x$
Solution:
Assume $\log (\sin x)=t$
$d(\log (\sin x))=d t$
$\Rightarrow \frac{\cos x}{\sin x} d x=d t$
$\Rightarrow \cot x d x=d t$
Substituting the values oft and dt we get
$\Rightarrow \int \mathrm{tdt}$
$\Rightarrow \frac{\mathrm{t}^{2}}{2}+\mathrm{c}$
But $t=\log (\sin x)$
$\Rightarrow \frac{\log (\sin x)^{2} x}{2}+c$