Question:
Evaluate the following integrals:
$\int \frac{1}{1+\sqrt{x}} d x$
Solution:
$x=t^{2}$
$\mathrm{d}(\mathrm{x})=2 \mathrm{t} \cdot \mathrm{dt}$
$\mathrm{dx}=2 \mathrm{t} \cdot \mathrm{dt}$
Substituting $\mathrm{t}$ and dt we get
$\Rightarrow \int \frac{2 t \cdot d t}{1+t}$
$\Rightarrow 2 \int \frac{t d t}{1+t}$
Add and subtract 1 from numerator
$\Rightarrow 2 \int \frac{t+1-1}{1+t} d t$
$\Rightarrow 2\left(\int \frac{t+1}{t+1} d t-\int \frac{1}{1+t} d t\right)$
$\Rightarrow 2\left(\int d t-\int \frac{1}{1+t} d t\right)$
$\Rightarrow 2(\mathrm{t}-\ln |1+\mathrm{t}|)$
But $t=\sqrt{x}$
$\Rightarrow 2(\sqrt{x}-\ln |1+\sqrt{x}|)+c$