Evaluate the following limits:


Evaluate the following limits:

$\lim _{x \rightarrow 0} \frac{\sin m x}{\tan n x}$



To Find: Limits

NOTE: First Check the form of imit. Used this method if the limit is satisfying any one from 7 indeterminate form.

In this Case, indeterminate Form is $\frac{0}{0}$

Formula used: $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$ and $\lim _{x \rightarrow 0} \frac{\operatorname{tanx}}{x}=1$

So $\lim _{x \rightarrow 0} \frac{\sin m x}{\tan n x}=\lim _{x \rightarrow 0}\left(\frac{\sin m x}{m x}\right) \times \frac{n x}{\tan n x} \times \frac{m x}{n x}=\frac{m x}{n x}=\frac{m}{n}$

Therefore, $\lim _{x \rightarrow 0} \frac{\sin m x}{\tan n x}=\frac{m}{n}$


Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now