Question:
Evaluate the Given limit: $\lim _{x \rightarrow \pi} \frac{\sin (\pi-x)}{\pi(\pi-x)}$
Solution:
$\lim _{x \rightarrow \pi} \frac{\sin (\pi-x)}{\pi(\pi-x)}$
It is seen that $x \rightarrow \pi \Rightarrow(\pi-x) \rightarrow 0$
$\therefore \lim _{x \rightarrow \pi} \frac{\sin (\pi-x)}{\pi(\pi-x)}=\frac{1}{\pi} \lim _{(\pi-x) \rightarrow 0} \frac{\sin (\pi-x)}{(\pi-x)}$
$=\frac{1}{\pi} \times 1 \quad\left[\lim _{y \rightarrow 0} \frac{\sin y}{y}=1\right]$
$=\frac{1}{\pi}$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.