Evaluate the integral:
$\int \frac{2 x}{2+x-x^{2}} d x$
$1=\int \frac{2 x}{2+x-x^{2}} d x$
As we can see that there is a term of $x$ in numerator and derivative of $x^{2}$ is also $2 x$. So there is a chance that we can make substitution for $-x^{2}+x+2$ and I can be reduced to a fundamental integration.
As, $\frac{\mathrm{d}}{\mathrm{dx}}\left(-\mathrm{x}^{2}+\mathrm{x}+2\right)=-2 \mathrm{x}+1$
$\therefore$ Let, $2 x=A(-2 x+1)+B$
$\Rightarrow 2 x=-2 A x+A+B$
On comparing both sides -
We have,
$-2 A=2 \Rightarrow A=-1$
$A+B=0 \Rightarrow B=-A=1$
Hence,
$\mathrm{I}=\int \frac{-(-2 \mathrm{x}+1)+1}{2+\mathrm{x}-\mathrm{x}^{2}} \mathrm{dx}$
$\therefore \mathrm{I}=-\int \frac{(-2 \mathrm{x}+1)}{2+\mathrm{x}-\mathrm{x}^{2}} \mathrm{dx}+\int \frac{1}{2+\mathrm{x}-\mathrm{x}^{2}} \mathrm{dx}$
Let, $I_{1}=-\int \frac{(-2 x+1)}{2+x-x^{2}} d x$ and $I_{2}=\int \frac{1}{2+x-x^{2}} d x$
Now, $I=I_{1}+I_{2} \ldots$ eqn $I$
We will solve $I_{1}$ and $I_{2}$ individually.
$\mathrm{As}, \mathrm{I}_{1}=-\int \frac{(-2 \mathrm{x}+1)}{2+\mathrm{x}-\mathrm{x}^{2}} \mathrm{dx}$
Let $u=2+x-x^{2} \Rightarrow d u=(-2 x+1) d x$
$\therefore I_{1}$ reduces to $-\int \frac{\mathrm{du}}{\mathrm{u}}$
Hence,
$\mathrm{I}_{1}=-\int \frac{\mathrm{du}}{\mathrm{u}}=-\log |\mathrm{u}|+\mathrm{C}\left\{\because \int \frac{\mathrm{dx}}{\mathrm{x}}=\log |\mathrm{x}|+\mathrm{C}\right\}$
On substituting value of $u$, we have:
$\mathrm{I}_{1}=-\log \left|2+\mathrm{x}-\mathrm{x}^{2}\right|+\mathrm{C} \ldots .$ eqn 2
As, $I_{2}=\int \frac{1}{2+x-x^{2}} d x$ and we don't have any derivative of function present in denominator. $\therefore$ we will use some special integrals to solve the problem.
As denominator doesn't have any square root term. So one of the following two integrals will solve the problem.
i) $\int \frac{1}{x^{2}-a^{2}} d x=\frac{1}{2 a} \log \left|\frac{x-a}{x+a}\right|+C$ ii) $\int \frac{1}{x^{2}+a^{2}} d x=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+C$
Now we have to reduce $\mathrm{I}_{2}$ such that it matches with any of above two forms.
We will make to create a complete square so that no individual term of $x$ is seen in denominator.
$\therefore I_{2}=-\int \frac{1}{x^{2}-x-2} d x$
$\Rightarrow I_{2}=-\int \frac{1}{\left(x^{2}-2\left(\frac{1}{2}\right) x+\left(\frac{1}{2}\right)^{2}\right]-2-\left(\frac{1}{2}\right)^{2}} d x$
Using: $a^{2}+2 a b+b^{2}=(a+b)^{2}$
We have:
$\mathrm{I}_{2}=-\int \frac{1}{\left(\mathrm{x}-\frac{1}{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}} \mathrm{dx}$
$\mathrm{I}_{2}$ matches with $\int \frac{1}{\mathrm{x}^{2}-\mathrm{a}^{2}} \mathrm{dx}=\frac{1}{2 \mathrm{a}} \log \left|\frac{\mathrm{x}-\mathrm{a}}{\mathrm{x}+\mathrm{a}}\right|+\mathrm{C}$
$\therefore I_{2}=-\frac{1}{2\left(\frac{2}{2}\right)} \log \left|\frac{\left(x-\frac{1}{2}\right)-\frac{3}{2}}{\left(x-\frac{1}{2}\right)+\frac{2}{2}}\right|+C$
$\therefore I_{2}=-\frac{1}{3} \log \left|\frac{2 x-1-3}{2 x-1+3}\right|+C=-\frac{1}{3} \log \left|\frac{2 x-4}{2 x+2}\right|+C=-\frac{1}{3} \log \left|\frac{x-2}{x+1}\right|+C \ldots$ eqn 3
From eqn 1:
$\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}$
Using eqn 2 and eqn 3 :
$\therefore|=-\log | 2+\mathrm{x}-\mathrm{x}^{2}\left|-\frac{1}{3} \log \right| \frac{\mathrm{x}-2}{\mathrm{x}+1} \mid+\mathrm{C}$
- JEE Main
- Exam Pattern
- Previous Year Papers
- PYQ Chapterwise
- Physics
- Kinematics 1D
- Kinemetics 2D
- Friction
- Work, Power, Energy
- Centre of Mass and Collision
- Rotational Dynamics
- Gravitation
- Calorimetry
- Elasticity
- Thermal Expansion
- Heat Transfer
- Kinetic Theory of Gases
- Thermodynamics
- Simple Harmonic Motion
- Wave on String
- Sound waves
- Fluid Mechanics
- Electrostatics
- Current Electricity
- Capacitor
- Magnetism and Matter
- Electromagnetic Induction
- Atomic Structure
- Dual Nature of Matter
- Nuclear Physics
- Radioactivity
- Semiconductors
- Communication System
- Error in Measurement & instruments
- Alternating Current
- Electromagnetic Waves
- Wave Optics
- X-Rays
- All Subjects
- Physics
- Motion in a Plane
- Law of Motion
- Work, Energy and Power
- Systems of Particles and Rotational Motion
- Gravitation
- Mechanical Properties of Solids
- Mechanical Properties of Fluids
- Thermal Properties of matter
- Thermodynamics
- Kinetic Theory
- Oscillations
- Waves
- Electric Charge and Fields
- Electrostatic Potential and Capacitance
- Current Electricity
- Thermoelectric Effects of Electric Current
- Heating Effects of Electric Current
- Moving Charges and Magnetism
- Magnetism and Matter
- Electromagnetic Induction
- Alternating Current
- Electromagnetic Wave
- Ray Optics and Optical Instruments
- Wave Optics
- Dual Nature of Radiation and Matter
- Atoms
- Nuclei
- Semiconductor Electronics: Materials, Devices and Simple Circuits.
- Chemical Effects of Electric Current,
All Study Material
- JEE Main
- Exam Pattern
- Previous Year Papers
- PYQ Chapterwise
- Physics
- Kinematics 1D
- Kinemetics 2D
- Friction
- Work, Power, Energy
- Centre of Mass and Collision
- Rotational Dynamics
- Gravitation
- Calorimetry
- Elasticity
- Thermal Expansion
- Heat Transfer
- Kinetic Theory of Gases
- Thermodynamics
- Simple Harmonic Motion
- Wave on String
- Sound waves
- Fluid Mechanics
- Electrostatics
- Current Electricity
- Capacitor
- Magnetism and Matter
- Electromagnetic Induction
- Atomic Structure
- Dual Nature of Matter
- Nuclear Physics
- Radioactivity
- Semiconductors
- Communication System
- Error in Measurement & instruments
- Alternating Current
- Electromagnetic Waves
- Wave Optics
- X-Rays
- All Subjects
- Physics
- Motion in a Plane
- Law of Motion
- Work, Energy and Power
- Systems of Particles and Rotational Motion
- Gravitation
- Mechanical Properties of Solids
- Mechanical Properties of Fluids
- Thermal Properties of matter
- Thermodynamics
- Kinetic Theory
- Oscillations
- Waves
- Electric Charge and Fields
- Electrostatic Potential and Capacitance
- Current Electricity
- Thermoelectric Effects of Electric Current
- Heating Effects of Electric Current
- Moving Charges and Magnetism
- Magnetism and Matter
- Electromagnetic Induction
- Alternating Current
- Electromagnetic Wave
- Ray Optics and Optical Instruments
- Wave Optics
- Dual Nature of Radiation and Matter
- Atoms
- Nuclei
- Semiconductor Electronics: Materials, Devices and Simple Circuits.
- Chemical Effects of Electric Current,