$f$ is a real valued function given by $f(x)=27 x^{3}+\frac{1}{x^{3}}$ and $\alpha, \beta$ are roots of $3 x+\frac{1}{x}=12$. Then,
(a) f(α) ≠ f(β)
(b) f(α) = 10
(c) f(β) = −10
(d) None of these
(d) None of these
Given:
$f(x)=27 x^{3}+\frac{1}{x^{3}}$
$\Rightarrow f(x)=\left(3 x+\frac{1}{x}\right)\left(9 x^{2}+\frac{1}{x^{2}}-3\right)$
$\Rightarrow f(x)=\left(3 x+\frac{1}{x}\right)\left(\left(3 x+\frac{1}{x}\right)^{2}-9\right)$
$\Rightarrow f(\alpha)=\left(3 \alpha+\frac{1}{\alpha}\right)\left(\left(3 \alpha+\frac{1}{\alpha}\right)^{2}-9\right)$
Since $\alpha$ and $\beta$ are the roots of $3 x+\frac{1}{x}=12$,
$3 \alpha+\frac{1}{\alpha}=12$ and $3 \beta+\frac{1}{\beta}=12$
$\Rightarrow f(\alpha)=12\left((12)^{2}-9\right)$ and $f(\beta)=12\left((12)^{2}-9\right)$
$\Rightarrow f(\alpha)=f(\beta)=12\left((12)^{2}-9\right)$
Disclaimer: The question in the book has some error, so none of the options are matching with the solution. The solution is created according to the question given in the book.
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.