Question:
Factorise:
(i) 9x3 − 6x2 + 12x
(ii) 8x3 − 72xy + 12x
(iii) 18a3b3 − 27a2b3 + 36a3b2
Solution:
(i) H.C.F. of $9 x^{3}, 6 x^{2}$ and $12 x$ is $3 x$.
$\therefore 9 x^{3}-6 x^{2}+12 x=3 x\left(3 x^{2}-2 x+4\right)$
(ii) H.C.F. of $8 x^{3}, 72 x y$ and $12 x$ is $4 x$.
$\therefore 8 x^{3}-72 x y+12 x=4 x\left(2 x^{2}-18 y+3\right)$
(iii) H.C.F. of $18 a^{3} b^{3}, 27 a^{2} b^{3}$ and $36 a^{3} b^{2}$ is $9 a^{2} b^{2}$.
$\therefore 18 a^{3} b^{3}-27 a^{2} b^{3}+36 a^{3} b^{2}=9 a^{2} b^{2}(2 a b-3 b+4 a)$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.