Factorize each of the following polynomials:
1. $x^{3}+13 x^{2}+31 x-45$ given that $x+9$ is a factor
2. $4 x^{3}+20 x^{2}+33 x+18$ given that $2 x+3$ is a factor
1. $x^{3}+13 x^{2}+31 x-45$ given that $x+9$ is a factor
let, $f(x)=x^{3}+13 x^{2}+31 x-45$
given that (x + 9) is the factor
divide f(x) with (x + 9) to get other factors
by , long division
$x^{2}+4 x-5$
$x+9 x^{3}+13 x^{2}+31 x-45$
$x^{3}+9 x^{2}$
(-) (-)
$4 x^{2}+31 x$
$4 x^{2}+36 x$
(-) (-)
-5x – 45
-5x – 45
(+) (+)
0
$=x^{3}+13 x^{2}+31 x-45=(x+9)\left(x^{2}+4 x-5\right)$
Now,
$x^{2}+4 x-5=x^{2}+5 x-x-5$
= x(x + 5) -1(x + 5)
= (x + 5) (x – 1) are the factors
Hence, $x^{3}+13 x^{2}+31 x-45=(x+9)(x+5)(x-1)$
2. $4 x^{3}+20 x^{2}+33 x+18$ given that $2 x+3$ is a factor
let, $f(x)=4 x^{3}+20 x^{2}+33 x+18$
given that 2x + 3 is a factor
divide f(x) with (2x + 3) to get other factors
by, long division
$2 x^{2}+7 x+6$
$2 x+3,4 x^{3}+20 x^{2}+33 x+18$
$4 x^{3}+6 x^{2}$
(-) (-)
$14 x^{2}-33 x$
$14 x^{2}-21 x$
(-) (+)
12x + 18
12x + 18
(-) (-)
0
$=>4 x^{3}+20 x^{2}+33 x+18=(2 x+3)\left(2 x^{2}+7 x+6\right)$
Now,
$2 x^{2}+7 x+6=2 x^{2}+4 x+3 x+6$
= 2x(x + 2) + 3(x + 2)
= (2x + 3)(x + 2) are the factors
Hence, $4 x^{3}+20 x^{2}+33 x+18=(2 x+3)(2 x+3)(x+2)$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.