Find all points of discontinuity of f, where f is defined by
$f(x)=\left\{\begin{array}{l}x^{3}-3, \text { if } x \leq 2 \\ x^{2}+1, \text { if } x>2\end{array}\right.$
The given function $f$ is $f(x)=\left\{\begin{array}{l}x^{3}-3, \text { if } x \leq 2 \\ x^{2}+1, \text { if } x>2\end{array}\right.$
The given function f is defined at all the points of the real line.
Let c be a point on the real line.
Case I:
If $c<2$, then $f(c)=c^{3}-3$ and $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}\left(x^{3}-3\right)=c^{3}-3$
$\therefore \lim _{x \rightarrow c} f(x)=f(c)$
Therefore, f is continuous at all points x, such that x < 2
Case II:
If $c=2$, then $f(c)=f(2)=2^{3}-3=5$
$\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}}\left(x^{3}-3\right)=2^{3}-3=5$
$\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}\left(x^{2}+1\right)=2^{2}+1=5$
$\therefore \lim _{x \rightarrow 2} f(x)=f(2)$
Therefore, f is continuous at x = 2
Case III:
If $c>2$, then $f(c)=c^{2}+1$
$\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}\left(x^{2}+1\right)=c^{2}+1$
$\therefore \lim _{x \rightarrow c} f(x)=f(c)$
Therefore, $f$ is continuous at all points $x$, such that $x>2$
Thus, the given function f is continuous at every point on the real line.
Hence, f has no point of discontinuity.
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.