Find all points of discontinuity of f, where f is defined by
$f(x)=\left\{\begin{array}{l}\frac{x}{|x|}, \text { if } x<0 \\ -1, \text { if } x \geq 0\end{array}\right.$
The given function $f$ is $f(x)=\left\{\begin{array}{l}\frac{x}{|x|}, \text { if } x<0 \\ -1, \text { if } x \geq 0\end{array}\right.$
It is known that, $x<0 \Rightarrow|x|=-x$
Therefore, the given function can be rewritten as
$f(x)=\left\{\begin{array}{l}\frac{x}{|x|}=\frac{x}{-x}=-1, \text { if } x<0 \\ -1, \text { if } x \geq 0\end{array}\right.$
$\Rightarrow f(x)=-1$ for all $x \in \mathbf{R}$
Let $c$ be any real number. Then, $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}(-1)=-1$
Also, $f(c)=-1=\lim _{x \rightarrow c} f(x)$
Therefore, the given function is a continuous function.
Hence, the given function has no point of discontinuity.
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.