Question:
Find all possible values of $y$ for which the distance between the points $A(2,-3)$ and $B(10, y)$ is 10 units.
Solution:
The given points are $A(2,-3)$ and $B(10, y)$.
$\therefore A B=\sqrt{(2-10)^{2}+(-3-y)^{2}}$
$=\sqrt{(-8)^{2}+(-3-y)^{2}}$
$=\sqrt{64+9+y^{2}+6 y}$
$\because A B=10$
$\therefore \sqrt{64+9+y^{2}+6 y}=10$
$\Rightarrow 73+y^{2}+6 y=100 \quad$ (Squaring both sides)
$\Rightarrow y^{2}+6 y-27=0$
$\Rightarrow y^{2}+9 y-3 y-27=0$
$\Rightarrow y(y+9)-3(y+9)=0$
$\Rightarrow(y+9)(y-3)=0$
$\Rightarrow y+9=0$ or $y-3=0$
$\Rightarrow y=-9$ or $y=3$
Hence, the possible values of $y$ are $-9$ and 3 .