Find all the angles of an equilateral triangle.
Let $A B C$ be an equilateral triangle such that $A B=B C=C A$
We have, $\quad A B=A C \Rightarrow \angle C=\angle B$
[angles opposite to equal sides are equal]
Let $\angle C=\angle B=x^{\circ}$ $\ldots(i)$
Now, $B C=B A$
$\Rightarrow$ $\angle A=\angle C$ ... (ii)
[angles opposite to equal sides are equal]
From Eqs. (i) and (ii),
$\angle A=\angle B=\angle C=x$
Now, in $\triangle A B C$, $\angle A+\angle B+\angle C=180^{\circ}$ [by angle sum property of a triangle]
$\Rightarrow \quad x+x+x=180^{\circ}$
$\Rightarrow \quad 3 x=180^{\circ}$
$\therefore \quad x=60^{\circ}$
Hence, $\angle A=\angle B=\angle C=60^{\circ}$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.