Find the angle to intersection of the following curves:
$y=x^{2}$ and $x^{2}+y^{2}=20$
Given:
Curves $y=x^{2} \ldots$ (1)
$\& x^{2}+y^{2}=20 \ldots(2)$
First curve $y=x^{2}$
$\Rightarrow \mathrm{m}_{1}=\frac{\mathrm{dy}}{\mathrm{dx}}=2 \mathrm{x} \ldots$ (3)
Second curve is $x^{2}+y^{2}=20$
Differentiating above w.r.t $x$,
$\Rightarrow 2 x+2 y \cdot \frac{d y}{d x}=0$
$\Rightarrow y \cdot \frac{d y}{d x}=-x$
$\Rightarrow m_{2}=\frac{d y}{d x}=\frac{-x}{y} \ldots(4)$
Substituting $(1)$ in $(2)$, we get
$\Rightarrow y+y^{2}=20$
$\Rightarrow y^{2}+y-20=0$
We will use factorization method to solve the above Quadratic equation
$\Rightarrow y^{2}+5 y-4 y-20=0$
$\Rightarrow y(y+5)-4(y+5)=0$
$\Rightarrow(y+5)(y-4)=0$
$\Rightarrow y=-5 \& y=4$
Substituting $y=-5 \& y=4$ in $(1)$ in $(2)$,
$y=x^{2}$
when $y=-5$
$\Rightarrow-5=x^{2}$
$\Rightarrow x=\sqrt{-5}$
when $y=4$
$\Rightarrow 4=x^{2}$
$\Rightarrow x=\pm 2$
Substituting above values for $m_{1} \& m_{2}$, we get,
when $x=2$
$m_{1}=\frac{d y}{d x}=2 \times 2=4$
when $x=1$
$\mathrm{m}_{1}=\frac{\mathrm{dy}}{\mathrm{dx}}=2 \times-2=-4$
Values of $m_{1}$ is $4 \&-4$
when $y=4 \& x=2$
$\mathrm{m}_{2}=\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-\mathrm{x}}{\mathrm{y}}=\frac{-2}{4}=\frac{-1}{2}$
when $y=4 \& x=-2$
$m_{2}=\frac{d y}{d x}=\frac{-x}{y}=\frac{2}{4}=\frac{1}{2}$
Values of $m_{2}$ is $\frac{-1}{2} \& \frac{1}{2}$
when $m_{1}=\infty \& m_{2}=0$
$\tan \theta=\left|\frac{\frac{-1}{2}-4}{1+2 \times 4}\right|$
$\tan \theta=\left|\frac{\frac{-9}{2}}{1-2}\right|$
$\tan \theta=\left|\frac{9}{2}\right|$
$\theta=\tan ^{-1}\left(\frac{9}{2}\right)$
$\theta \cong 77.47$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.