Find the area of the shaded region in fig, if
PQ = 24, PR = 7 cm and O is the centre of the circle.
In the figure, $\angle \mathrm{RPQ}=90^{\circ}$
(Angle subtended by a diameter on the circumference)
Therefore, $\triangle R P Q$ is right angled at $P$,
RP = 7 cm and PQ = 24 cm
Then by Pythagoras Theorem, we have
$\mathrm{QR}^{2}=\mathrm{RP}^{2}+\mathrm{PQ}^{2}$
$\mathrm{QR}^{2}=\mathrm{RP}^{2}+\mathrm{PQ}^{2}$
$=(7)^{2}+(24)^{2}=625$
$\Rightarrow \mathrm{QR}=25 \mathrm{~cm}$
$\therefore$ The radius of the circle
$=\frac{25}{2} \mathrm{~cm}$
Now, the area of the shaded region (see figure)
$=\frac{1}{2} \pi r^{2}-\frac{1}{2} \times R P \times P Q$
$=\left\{\frac{1}{2} \times \frac{22}{7} \times\left(\frac{25}{2}\right)^{2}-\frac{1}{2} \times 7 \times 24\right\} \mathrm{cm}^{2}$
$=\left\{\frac{6875}{28}-84\right\} c m^{2}=\frac{4523}{28} \mathrm{~cm}^{2}$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.