Find the area of the triangle whose sides are 18 cm, 24 cm and 30 cm. Also, find the height corresponding to the smallest side.
Let the sides of triangle be a = 18 cm, b = 24 cm and c = 30 cm.
Let s be the semi-perimeter of the triangle.
$s=\frac{1}{2}(a+b+c)$
$s=\frac{1}{2}(18+24+30)$
$s=36 \mathrm{~cm}$
Area of a triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{36(36-18)(36-24)(36-30)}$
$=\sqrt{36 \times 18 \times 12 \times 6}$
$=\sqrt{46656}$
$=216 \mathrm{~cm}^{2}$
The smallest side is 18 cm long. This is the base.
Now, area of a triangle $=\frac{1}{2} \times b \times h$
$\Rightarrow 216=\frac{1}{2} \times 18 \times h$
$\Rightarrow 216=9 h$
$\Rightarrow \frac{216}{9}=h$
$\Rightarrow h=24 \mathrm{~cm}$
The height corresponding to the smallest side is 24 cm.