Find the derivation of each of the following from the first principle:
$\frac{1}{x^{3}}$
Let $f(x)=\frac{1}{x^{3}}$
We need to find the derivative of f(x) i.e. f’(x)
We know that,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ …(i)
$f(x)=\frac{1}{x^{3}}$
$\mathrm{f}(\mathrm{x}+\mathrm{h})=\frac{1}{(\mathrm{x}+\mathrm{h})^{3}}$
Putting values in (i), we get
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\frac{1}{(x+h)^{3}}-\frac{1}{x^{3}}}{h}$
$=\lim _{h \rightarrow 0} \frac{(x+h)^{-3}-x^{-3}}{(x+h)-x}$
[Add and subtract x in denominator]
$=\lim _{z \rightarrow x} \frac{z^{-3}-x^{-3}}{z-x}$ where $z=x+h$ and $z \rightarrow x$ as $h \rightarrow 0$
$=(-3) x^{-3-1}\left[\because \lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}=n a^{n-1}\right]$
$=-3 x^{-4}$
$=-\frac{3}{x^{4}}$
Hence,
$f(x)=-\frac{3}{x^{4}}$