Find the derivation of each of the following from the first principle:
$3 x^{2}+2 x-5$
Let $f(x)=3 x^{2}+2 x-5$
We need to find the derivative of f(x) i.e. f’(x)
We know that,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ …(i)
$f(x)=3 x^{2}+2 x-5$
$f(x+h)=3(x+h)^{2}+2(x+h)-5$
$=3\left(x^{2}+h^{2}+2 x h\right)+2 x+2 h-5$
$\left[\because(a+b)^{2}=a^{2}+b^{2}+2 a b\right]$
$=3 x^{2}+3 h^{2}+6 x h+2 x+2 h-5$
Putting values in (i), we get
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{3 x^{2}+3 h^{2}+6 x h+2 x+2 h-5-\left(3 x^{2}+2 x-5\right)}{h}$
$=\lim _{h \rightarrow 0} \frac{3 x^{2}+3 h^{2}+6 x h+2 x+2 h-5-3 x^{2}-2 x+5}{h}$
$=\lim _{h \rightarrow 0} \frac{3 h^{2}+6 x h+2 h}{h}$
$=\lim _{h \rightarrow 0} 3 h+6 x+2$
Putting h = 0, we get
$f^{\prime}(x)=3(0)+6 x+2$
$=6 x+2$
Hence, $f^{\prime}(x)=6 x+2$