Deepak Scored 45->99%ile with Bounce Back Crack Course. You can do it too!

Find the derivative of the following functions


Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers): $\frac{\sin x+\cos x}{\sin x-\cos x}$



Let $f(x)=\frac{\sin x+\cos x}{\sin x-\cos x}$

By quotient rule,

$f^{\prime}(x)=\frac{(\sin x-\cos x) \frac{d}{d x}(\sin x+\cos x)-(\sin x+\cos x) \frac{d}{d x}(\sin x-\cos x)}{(\sin x-\cos x)^{2}}$

$=\frac{(\sin x-\cos x)(\cos x-\sin x)-(\sin x+\cos x)(\cos x+\sin x)}{(\sin x-\cos x)^{2}}$

$=\frac{-(\sin x-\cos x)^{2}-(\sin x+\cos x)^{2}}{(\sin x-\cos x)^{2}}$

$=\frac{-\left[\sin ^{2} x+\cos ^{2} x-2 \sin x \cos x+\sin ^{2} x+\cos ^{2} x+2 \sin x \cos x\right]}{(\sin x-\cos x)^{2}}$

$=\frac{-[1+1]}{(\sin x-\cos x)^{2}}$

$=\frac{-2}{(\sin x-\cos x)^{2}}$


Leave a comment

Free Study Material