Find the equation


Find the equation of the tangent and the normal to the following curves at the indicated points:

$x^{2}=4 y$ at $(2,1)$


finding the slope of the tangent by differentiating the curve

$2 \mathrm{x}=4 \frac{\mathrm{dy}}{\mathrm{dx}}$


$\mathrm{m}($ tangent $)$ at $(2,1)=1$

normal is perpendicular to tangent so, $m_{1} m_{2}=-1$

$\mathrm{m}($ normal) at $(2,1)=-1$

equation of tangent is given by $y-y_{1}=m(\operatorname{tangent})\left(x-x_{1}\right)$


equation of normal is given by $y-y_{1}=m($ normal $)\left(x-x_{1}\right)$


Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now