Find the following products:
(i) (x + 4) (x + 7)
(ii) (x − 11) (x + 4)
(iii) (x + 7) (x − 5)
(iv) (x − 3) ( x − 2)
(v) (y2 − 4) (y2 − 3)
(vi) $\left(x+\frac{4}{3}\right)\left(x+\frac{3}{4}\right)$
(vii) (3x + 5) (3x + 11)
(viii) (2x2 − 3) (2x2 + 5)
(ix) (z2 + 2) (z2 − 3)
(x) (3x − 4y) (2x − 4y)
(xi) (3x2 − 4xy) (3x2 − 3xy)
(xii) $\left(x+\frac{1}{5}\right)(x+5)$
(xiii) $\left(z+\frac{3}{4}\right)\left(z+\frac{4}{3}\right)$
(xiv) (x2 + 4) (x2 + 9)
(xv) (y2 + 12) (y2 + 6)
(xvi) $\left(y^{2}+\frac{5}{7}\right)\left(y^{2}-\frac{14}{5}\right)$
(xvii) $\left(p^{2}+16\right)\left(p^{2}-\frac{1}{4}\right)$
(i) Here, we will use the identity $(x+a)(x+b)=x^{2}+(a+b) x+a b$.
$(x+4)(x+7)$
$=x^{2}+(4+7) x+4 \times 7$
$=x^{2}+11 x+28$
(ii) Here, we will use the identity $(x-a)(x+b)=x^{2}+(b-a) x-a b$.
$(x-11)(x+4)$
$=x^{2}+(4-11) x-11 \times 4$
$=x^{2}-7 x-44$
(iii) Here, we will use the identity $(x+a)(x-b)=x^{2}+(a-b) x-a b$.
$(x+7)(x-5)$
$=x^{2}+(7-5) x-7 \times 5$
$=x^{2}+2 x-35$
(iv) Here, we will use the identity $(x-a)(x-b)=x^{2}-(a+b) x+a b$.
$(x-3)(x-2)$
$=x^{2}-(3+2) x+3 \times 2$
$=x^{2}-5 x+6$
(v) Here, we will use the identity $(x-a)(x-b)=x^{2}-(a+b) x+a b$.
$\left(y^{2}-4\right)\left(y^{2}-3\right)$
$=\left(y^{2}\right)^{2}-(4+3)\left(y^{2}\right)+4 \times 3$
$=y^{4}-7 y^{2}+12$
(vi) Here, we will use the identity $(x+a)(x+b)=x^{2}+(a+b) x+a b$.
$\left(x+\frac{4}{3}\right)\left(x+\frac{3}{4}\right)$
$=x^{2}+\left(\frac{4}{3}+\frac{3}{4}\right) x+\frac{4}{3} \times \frac{3}{4}$
$=x^{2}+\frac{25}{12} x+1$
(vii) Here, we will use the identity $(x+a)(x+b)=x^{2}+(a+b) x+a b$.
$(3 x+5)(3 x+11)$
$=(3 x)^{2}+(5+11)(3 x)+5 \times 11$
$=9 x^{2}+48 x+55$
(viii) Here, we will use the identity $(x-a)(x+b)=x^{2}+(b-a) x-a b$.
$\left(2 x^{2}-3\right)\left(2 x^{2}+5\right)$
$=\left(2 x^{2}\right)^{2}+(5-3)\left(2 x^{2}\right)-3 \times 5$
$=4 x^{4}+4 x^{2}-15$
(ix) Here, we will use the identity $(x+a)(x-b)=x^{2}+(a-b) x-a b$.
$\left(z^{2}+2\right)\left(z^{2}-3\right)$
$=\left(z^{2}\right)^{2}+(2-3)\left(z^{2}\right)-2 \times 3$
$=z^{4}-z^{2}-6$
(x) Here, we will use the identity $(x-a)(x-b)=x^{2}-(a+b) x+a b$.
$(3 x-4 y)(2 x-4 y)$
$=(4 y-3 x)(4 y-2 x) \quad$ (Taking common $-1$ from both parentheses)
$=(4 y)^{2}-(3 x+2 x)(4 y)+3 x \times 2 x$
$=16 y^{2}-(12 x y+8 x y)+6 x^{2}$
$=16 y^{2}-20 x y+6 x^{2}$
(xi) Here, we will use the identity $(x-a)(x-b)=x^{2}-(a+b) x+a b$.
$\left(3 x^{2}-4 x y\right)\left(3 x^{2}-3 x y\right)$
$=\left(3 x^{2}\right)^{2}-(4 x y+3 x y)\left(3 x^{2}\right)+4 x y \times 3 x y$
$=9 x^{4}-\left(12 x^{3} y+9 x^{3} y\right)+12 x^{2} y^{2}$
$=9 x^{4}-21 x^{3} y+12 x^{2} y^{2}$
(xii) Here, we will use the identity $(x+a)(x+b)=x^{2}+(a+b) x+a b$.
$\left(x+\frac{1}{5}\right)(x+5)$
$=x^{2}+\left(\frac{1}{5}+5\right) x+\frac{1}{5} \times 5$
$=x^{2}+\frac{26}{5} x+1$
(xiii) Here, we will use the identity $(x+a)(x+b)=x^{2}+(a+b) x+a b$.
$\left(z+\frac{3}{4}\right)\left(z+\frac{4}{3}\right)$
$=z^{2}+\left(\frac{3}{4}+\frac{4}{3}\right) x+\frac{3}{4} \times \frac{4}{3}$
$=z^{2}+\frac{25}{12} z+1$
(xiv) Here, we will use the identity $(x+a)(x+b)=x^{2}+(a+b) x+a b$.
$\left(x^{2}+4\right)\left(x^{2}+9\right)$
$=\left(x^{2}\right)^{2}+(4+9)\left(x^{2}\right)+4 \times 9$
$=x^{4}+13 x^{2}+36$
(xv) Here, we will use the identity $(x+a)(x+b)=x^{2}+(a+b) x+a b$.
$\left(y^{2}+12\right)\left(y^{2}+6\right)$
$=\left(y^{2}\right)^{2}+(12+6)\left(y^{2}\right)+12 \times 6$
$=y^{4}+18 y^{2}+72$
(xvi) Here, we will use the identity $(x+a)(x-b)=x^{2}+(a-b) x-a b$.
$\left(y^{2}+\frac{5}{7}\right)\left(y^{2}-\frac{14}{5}\right)$
$=\left(y^{2}\right)^{2}+\left(\frac{5}{7}-\frac{14}{5}\right)\left(y^{2}\right)-\frac{5}{7} \times \frac{14}{5}$
$=y^{4}-\frac{73}{35} y^{2}-2$
(xvii) Here, we will use the identity $(x+a)(x-b)=x^{2}+(a-b) x-a b$.
$\left(p^{2}+16\right)\left(p^{2}-\frac{1}{4}\right)$
$=\left(p^{2}\right)^{2}+\left(16-\frac{1}{4}\right)\left(p^{2}\right)-16 \times \frac{1}{4}$
$=p^{4}+\frac{63}{4} p^{2}-4$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.