Find the general solution of $\operatorname{cosec} x=-2$
$\operatorname{cosec} x=-2$
It is known that
$\operatorname{cosec} \frac{\pi}{6}=2$
$\therefore \operatorname{cosec}\left(\pi+\frac{\pi}{6}\right)=-\operatorname{cosec} \frac{\pi}{6}=-2$ and $\operatorname{cosec}\left(2 \pi-\frac{\pi}{6}\right)=-\operatorname{cosec} \frac{\pi}{6}=-2$
i.e., $\operatorname{cosec} \frac{7 \pi}{6}=-2$ and $\operatorname{cosec} \frac{11 \pi}{6}=-2$
Therefore, the principal solutions are $x=\frac{7 \pi}{6}$ and $\frac{11 \pi}{6}$.
Now, $\operatorname{cosec} x=\operatorname{cosec} \frac{7 \pi}{6}$
$\Rightarrow \sin x=\sin \frac{7 \pi}{6} \quad\left[\operatorname{cosec} x=\frac{1}{\sin x}\right]$
$\Rightarrow \mathrm{x}=\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{7 \pi}{6}$, where $\mathrm{n} \in Z$
Therefore, the general solution is $x=n \pi+(-1)^{n} \frac{7 \pi}{6}$, where $n \in Z$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.